Warning: file_put_contents(aCache/aDaily/post/opendatascience/-2278-2279-2280-2278-): Failed to open stream: No space left on device in /var/www/tg-me/post.php on line 50
Data Science by ODS.ai 🦜 | Telegram Webview: opendatascience/2279 -
Telegram Group & Telegram Channel
Forwarded from Russian OSINT
🤖 Исследователи представили универсальный метод атаки на LLM под названием «Policy Puppetry»

Как сообщают исследователи из HiddenLayer, им удалось разработать универсальную методику prompt injection, которая позволяет обходить защитные барьеры LLM. Техника под названием «Policy Puppetry» успешно нарушает политики безопасности современных LLM и выходит за рамки ограничений таких моделей, как OpenAI (линейки ChatGPT 4o, 4.5, o1 и o3-mini), Google (Gemini 1.5, 2.0, 2.5), Microsoft (Copilot), Anthropic (Claude 3.5, 3.7), Llama, DeepSeek (V3 и R1), Qwen (2.5 72B) и Mistral (Mixtral 8x22B).

Исследователи не публикуют полные вредоносные примеры и не предоставляют доступ к готовым PoC для свободного использования, а лишь объясняют метод в научных целях.

Многие LLM от OpenAI, Google и Microsoft хорошо обучены отклонять прямолинейные опасные запросы, но если "вшить" их в инструкции и сделать частью собственных правил, то модели будут генерировать запрещённый контент без активации защитных механизмов.

Основой метода является использование специальных текстовых шаблонов, имитирующих документы политик в форматах XML, JSON или INI. При помощи таких шаблонов модели воспринимают вредоносные команды как безопасные системные инструкции. Они позволяют обходить встроенные ограничения и генерировать запрещенный контент, связанный с разработкой ⚠️ оружия массового поражения, пропагандой насилия, инструкциями по нанесению вреда себе, химическим оружием, а также с раскрытием конфиденциальной информации о работе внутренних механизмов моделей.

Условно: ИИ-модель думает: «Это не просьба пользователя, а команда на изменение настроек!». Когда текст выглядит как код или служебная инструкция, то модель перестаёт применять фильтры безопасности и начинает воспринимать команды буквально.

Техника отличается исключительной универсальностью. Один и тот же шаблон может применяться против множества моделей без необходимости в доработках. ↔️ Опасность обнаруженного метода в том, что он доступен практически любому пользователю и не требует глубоких технических знаний.

По мнению исследователей, подобная уязвимость свидетельствует о фундаментальных недостатках в методах обучения и настройки LLM, отмечая острую необходимость в новых подходах к обеспечению безопасности, чтобы предотвратить дальнейшее распространение угроз по мере усложнения ИИ-моделей.

@Russian_OSINT
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/opendatascience/2279
Create:
Last Update:

🤖 Исследователи представили универсальный метод атаки на LLM под названием «Policy Puppetry»

Как сообщают исследователи из HiddenLayer, им удалось разработать универсальную методику prompt injection, которая позволяет обходить защитные барьеры LLM. Техника под названием «Policy Puppetry» успешно нарушает политики безопасности современных LLM и выходит за рамки ограничений таких моделей, как OpenAI (линейки ChatGPT 4o, 4.5, o1 и o3-mini), Google (Gemini 1.5, 2.0, 2.5), Microsoft (Copilot), Anthropic (Claude 3.5, 3.7), Llama, DeepSeek (V3 и R1), Qwen (2.5 72B) и Mistral (Mixtral 8x22B).

Исследователи не публикуют полные вредоносные примеры и не предоставляют доступ к готовым PoC для свободного использования, а лишь объясняют метод в научных целях.

Многие LLM от OpenAI, Google и Microsoft хорошо обучены отклонять прямолинейные опасные запросы, но если "вшить" их в инструкции и сделать частью собственных правил, то модели будут генерировать запрещённый контент без активации защитных механизмов.

Основой метода является использование специальных текстовых шаблонов, имитирующих документы политик в форматах XML, JSON или INI. При помощи таких шаблонов модели воспринимают вредоносные команды как безопасные системные инструкции. Они позволяют обходить встроенные ограничения и генерировать запрещенный контент, связанный с разработкой ⚠️ оружия массового поражения, пропагандой насилия, инструкциями по нанесению вреда себе, химическим оружием, а также с раскрытием конфиденциальной информации о работе внутренних механизмов моделей.

Условно: ИИ-модель думает: «Это не просьба пользователя, а команда на изменение настроек!». Когда текст выглядит как код или служебная инструкция, то модель перестаёт применять фильтры безопасности и начинает воспринимать команды буквально.

Техника отличается исключительной универсальностью. Один и тот же шаблон может применяться против множества моделей без необходимости в доработках. ↔️ Опасность обнаруженного метода в том, что он доступен практически любому пользователю и не требует глубоких технических знаний.

По мнению исследователей, подобная уязвимость свидетельствует о фундаментальных недостатках в методах обучения и настройки LLM, отмечая острую необходимость в новых подходах к обеспечению безопасности, чтобы предотвратить дальнейшее распространение угроз по мере усложнения ИИ-моделей.

@Russian_OSINT

BY Data Science by ODS.ai 🦜






Share with your friend now:
tg-me.com/opendatascience/2279

View MORE
Open in Telegram


Data Science by ODS ai 🦜 Telegram | DID YOU KNOW?

Date: |

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Data Science by ODS ai 🦜 from br


Telegram Data Science by ODS.ai 🦜
FROM USA